

CONCEPTOS HIDROLÓGICOS BÁSICOS

Alba Lucina Martínez Haros

Cuenca

Es un área de la superficie terrestre donde las gotas de lluvia precipitadas dentro de ella tenderán a ser drenadas por el sistema de corrientes hacia un mismo punto de salida. Sus unidades son en kilómetros cuadrados (km2).

NOTA: Una cuenca es endorreica cuando el agua al fluir por un sistema de corrientes no tiene salida fluvial (cuenca cerrada). Por ejemplo, la cuenca del Valle de México. Normalmente es donde se forman los lagos.

Gasto

Es la cantidad de agua que escurre por un río en un determinado lugar y en un cierto tiempo, también se llama "caudal", sus unidades son volumen entre tiempo (m³ / s). El lugar donde se mide el gasto es en una estación hidrométrica que consiste en un punto de control (sección regular) dentro del río.

Definición de avenida

Es una elevación rápida y habitualmente breve del nivel de las aguas en un río o arroyo hasta un máximo desde el cual dicho nivel desciende a menor velocidad" (OMM/UNESCO, 1974). Estos incrementos y disminuciones, representan el comportamiento del escurrimiento en un río.

Avenida de diseño

Gasto líquido (fórmula racional)

$$Q_p = 0.278 \ C_e \ i \ A \qquad tc = 0.000325 \frac{L^{0.77}}{S^{0.385}}$$

$$hp(tc) = \frac{hp(24) - hp(1)}{3.1781} \ln(tc) + hp(1) \qquad i = \frac{hp(tc)}{tc}$$

Gasto sólido (USLE)

 Q_{s}

E = 0.224 R K LS C P

Donde:

- E = Erosión del suelo t/ha año.
- R = Erosividad de la lluvia. Mj/ha mm/hr
- K = Erosionabilidad del suelo.
- LS = Longitud y Grado de pendiente.
- C = Factor de vegetación
- P = Factor de prácticas mecánicas.

Tránsito de la avenida

A mano (ecuaciones de St.Venant)

 $\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial h}{\partial t} = i$ $\frac{\partial G_x}{\partial x} + \frac{\partial G_y}{\partial y} + \frac{\partial z}{\partial t} \rho_s = 0$ $\frac{\partial q_x}{\partial t} + \frac{\partial (q_x^2 / h)}{\partial x} + \frac{\partial (q_x q_y / h)}{\partial y} + g h \frac{\partial h}{\partial x} + g h \frac{\partial z}{\partial x} + \frac{q_x q}{(Ch)^2} = 0$

$$\frac{\partial q_{y}}{\partial t} + \frac{\partial (q_{y}^{2} / h)}{\partial y} + \frac{\partial (q_{x} q_{y} / h)}{\partial x} + g h \frac{\partial h}{\partial y} + g h \frac{\partial z}{\partial y} + \frac{q_{y} q}{(C h)^{2}} = 0$$

Con Paquetería

A) Uso de Hec-RAS

B) Uso de MIKE FLOOD

ELABORACIÓN DE UN ESTUDIO HIDROLÓGICO

- Características generales de la cuenca:
 - I. Área de la cuenca
 - 2. Longitud de cauce principal
 - 3. Cota máxima
 - 4. Cota mínima
 - 5. Pendiente media del cauce
 - 6. Tiempo de concentración.
- Cálculo de parámetros hidrológicos
 - Coeficiente de escurrimiento "Ce" y Número Curva "CN"
 - 2. Curvas de Intensidad-Duración-Frecuencia
 - 3. Lluvia de diseño y lluvia en exceso
- Cálculo del gasto de diseño para diferentes períodos de retorno
 - I. Fórmula Racional (Excel)
 - 2. Método de Chow (Excel)
 - 3. Hidrograma Unitario SCS (HEC-HMS)

CONTENIDO DE UN ESTUDIO HIDROLÓGICO EJEMPLO: SUBCUENCA SAN MIGUEL

Área de la cuenca (6)

- a) Abrir el archivo TRAMO_SAN_MIGUEL.KMZ en Google Earth.
- b) Identificar el área de estudio y delimitar la cuenca utilizando el Simulador de Flujos de Agua de Cuencas Hidrográficas (SIATL).

http://antares.inegi.org.mx/analisis/red_hidr o/SIATL/#

INTRODUCCIÓN

El Simulador de Flujos de Agua de Cuencas Hidrográficas denominado "SIATL" es una aplicación geoespacial que facilita la construcción de escenarios orientados a la toma de decisiones para apoyar diversos proyectos como: ordenamiento territorial, administración del agua, sustentabilidad de cuencas, prevención de desastres, construcción de infraestructura, estudios ecológicos, entre otros.

INFORMACIÓN DISPONIBLE

- 4.1 Rasgos Hidrográficos
- 4.2 Red Hidrográfica 1:50 000
- 4.3 Vías de Transporte
- 4.4 Geoestadístico y Social
- 4.5 División Cartográfica
- 4.6 Altimetría
- 4.7 Servicios de Imágenes
- 4.8 Sitios de Interés
- 4.9 Visualización de acuerdo a la escala

 Con ayuda de las coordenadas geográficas y la imagen de Google buscar en SIATL el tramo de estudio

Elevación: 15 m

FLUJOS DE CORRIENTES AGUAS ARRIBA

Utilicen la función de Flujos de Corriente Aguas Arriba (Triángulo) y den un clic sobre un segmento de la red hidrográfica.

Se mostrará en color rojo todos los flujos tributarios al segmento de referencia en sentido aguas arriba acotado a la divisoria de la subcuenca y el cauce principal se resalta en color naranja con una línea más gruesa a las demás.

DESCARGAR HIDROLOGÍA SUPERFICIAL A ESCALA I:50,000 PARA LA SUBCUENCA SAN MIGUEL

Propiedad	Valor
Densidad de Drenaje	3.4581
Coeficiente de Compacidad	2.5532
Longitud Promedio de flujo superficial de la Subcuenca (0.07229403429628987016
Elevación Máxima en la Subcuenca (m)	2440
Elevación Mínima en la Subcuenca (m)	240
Pendiente Media de la Subcuenca (%)	31.68
Elevación Máxima en Corriente Principal (m)	1756
Elevación Mínima en Corriente Principal (m)	229
Longitud de Corriente Principal (m)	247324
Pendiente de Corriente Principal (%)	0.617
Sinuosidad de Corriente Principal	2.05051114001207
Sinuosidad de Corriente Principal	Regresar Cerrar

Longitud de Cauce Principal (2)

Propiedad	Valor
Densidad de Drenaje	3.4581
Coeficiente de Compacidad	2.5532
Longitud Promedio de flujo superficial de la Subcuenca (0.07229403429628987016
Elevación Máxima en la Subcuenca (m)	2440
Elevación Mínima en la Subcuenca (m)	240
Pendiente Media de la Subcuenca (%)	31.68
Elevación Máxima en Corriente Principal (m)	1756
Elevación Mínima en Corriente Principal (m)	229
Longitud de Corriente Principal (m)	247324
Pendience de Corriente Principal (%)	0.617
Sinuosidad de Corriente Principal	2.05051114001207
Sinuosidad de Corriente Principal	Regresar Cerrar

Cota Máxima-Cota Mínima (3)

Propiedad	Valor
Densidad de Drenaje	3.4581
Coeficiente de Compacidad	2.5532
Longitud Promedio de flujo superficial de la Subcuenca (0.07229403429628987016
Elevación Máxima en la Subcuenca (m)	2440
Elevación Mínima en la Subcuenca (m)	240
Pendiente Media de la Subcuenca (%)	31.68
Elevación Máxima en Corriente Principal (m)	1756
Elevación Mínima en Corriente Principal (m)	229
Longitud de Corriente Principal (M)	247324
Pendiente de Corriente Principal (%)	0.617
Sinuosidad de Corriente Principal	2.05051114001207

Sinuosidad de Corriente Principal

Pendiente Media del Cauce (4)

Propiedad	Valor
Densidad de Drenaje	3.4581
Coeficiente de Compacidad	2.5532
Longitud Promedio de flujo superficial de la Subcuenca (0.07229403429628987016
Elevación Máxima en la Subcuenca (m)	2440
Elevación Mínima en la Subcuenca (m)	240
Pendiente Media de la Subcuenca (%)	31.68
Elevación Máxima en Corriente Principal (m)	1756
Elevación Mínima en Corriente Principal (m)	229
Longitud de Corriente Principal (m)	247324
Pendiente de Corriente Principal (%)	0.617
Sinuosidad de Corriente Principal	2.05051114001207

Sinuosidad de Corriente Principal

Pendiente Media del Cauce (4)

 La pendiente de cauce principal es uno de los indicadores más importantes del grado de respuesta de una cuenca ante una tormenta. La pendiente varía a lo largo del cauce, por lo que es necesario definir una pendiente media que en este caso se calcula utilizando el criterio de Taylor y Shuartz:

$$S = \left[\frac{L}{\frac{l_1}{\sqrt{S_1}} + \frac{l_2}{\sqrt{S_2}} + \dots + \frac{l_n}{\sqrt{S_n}}}\right]$$

S ₁ , S ₂ S _m	pendientes parciales de los tramos 1,2,,m
I ₁ , I ₂ I _m	longitudes parciales de los tramos 1,2,,m
L	longitud total del cauce principal en metros
S	pendiente media del cauce principal

Tiempo de Concentración (6)

El tiempo de concentración t_c es el tiempo que requiere una partícula de agua en desplazarse desde el punto más alejado de la cuenca hasta el sitio en estudio. Se puede determinar con las siguientes formulas: tc

Fórmula General

$$c_1 = \frac{L}{3600 v}$$

Fórmula de la USSCS (Kirpich)

$$tc_2 = \frac{0.000325 \ L^{0.77}}{S^{0.385}}$$

Fórmula de Rowe

$$tc_3 = \left[\frac{0.86 \ L^3}{H}\right]^{0.385}$$

<i>tc</i> ₁	tiempo de concentración en minutos (Fórmula General)
<i>tc</i> ₂	tiempo de concentración en minutos (Fórmula de Kirpich)
<i>tc</i> ₃	tiempo de concentración en minutos (Fórmula de Rowe).
L	longitud del cauce principal en metros.
S	pendiente del cauce principal.
<i>H</i>	desnivel total en el sentido del flujo en metros.
V	velocidad

Tiempo de Concentración (6)

El tiempo de concentración t_c es el tiempo que requiere una partícula de agua en desplazarse desde el punto más alejado de la cuenca hasta el sitio en estudio. Se puede determinar con las siguientes formulas: tc

Fórmula General

$$c_1 = \frac{L}{3600 v}$$

Fórmula de la USSCS (Kirpich)

$$tc_2 = \frac{0.000325 \ L^{0.77}}{S^{0.385}}$$

Fórmula de Rowe

$$tc_3 = \left[\frac{0.86 \ L^3}{H}\right]^{0.385}$$

<i>tc</i> ₁	tiempo de concentración en minutos (Fórmula General)
<i>tc</i> ₂	tiempo de concentración en minutos (Fórmula de Kirpich)
<i>tc</i> ₃	tiempo de concentración en minutos (Fórmula de Rowe).
L	longitud del cauce principal en metros.
S	pendiente del cauce principal.
<i>H</i>	desnivel total en el sentido del flujo en metros.
V	velocidad

Velocidad Media (6b)

$$V_i = 16.1345\sqrt{S_i}$$

$$V = \frac{\sum_{i=n}^{i=1} V_i}{n}$$

V.- Velocidad media n.- Número de tramos

CONTENIDO DE UN ESTUDIO HIDROLÓGICO EJEMPLO: SUBCUENCA SAN MIGUEL

Características generales de la cuenca:

- I. Área de la cuenca
- 2. Longitud de cauce principal
- 3. Cota máxima
- 4. Cota mínima
- 5. Pendiente media del cauce
- 6. Tiempo de concentración.
- Cálculo de parámetros hidrológicos
 - L. Coeficiente de escurrimiento "Ce" y Número Curva "CN"
 - 2. Curvas de Intensidad-Duración-Frecuencia
 - 3. Lluvia de diseño y lluvia en exceso
- Cálculo del gasto de diseño para diferentes períodos de retorno
 - I. Fórmula Racional (Excel)
 - 2. Método de Chow (Excel)
 - 3. Hidrograma Unitario SCS (HEC-HMS)

Cálculo de Parámetros Hidrológicos

Coeficiente de Escurrimiento Ce y Número Curva CN (1)

Tradicionalmente, se determina con el auxilio de valores estimados para diferentes tipos de áreas por drenar. Si la cuenca de estudio esta integrada por diferentes tipos de superficie, se calcula un coeficiente de escurrimiento promedio con la expresión:

$$C = \frac{C_1 A_1 + C_2 A_2 + \dots + C_i A_i}{A_1 + A_2 + \dots + A_i}$$

donde C es el coeficiente de escurrimiento promedio; C¹, C²,....,Cⁱ son los coeficientes de escurrimiento de cada una de las superficies por drenar que conforman la cuenca de estudio; y A¹, A²,....Aⁱ son las áreas parciales que integran la cuenca de estudio.

Intersectar edafología y vegetación

mputes a geometric intersection of the input features.

K y Uso respecto a la NORMA-011CNA2000

TABLA 1 VALORES DE K, EN FUNCION DEL TIPO Y USO DE SUELO

TIPO	DE	CARACTERISTICAS
SUELO		
Α		Suelos permeables, tales como arenas profundas y loess poco compactos
В		Suelos medianamente permeables, tales como arenas de mediana profundidad: loess algo más compactos que los correspondientes a los suelos A; terrenos migajosos
с		Suelos casi impermeables, tales como arenas o loess muy delgados sobre una capa impermeable, o bien arcillas

USO DEL SUELO	TIPO DE SUELO			
	Α	В	С	
Barbecho, áreas incultas y desnudas	0,26	0,28	0,30	
Cultivos:				
En Hilera	0,24	0,27	0,30	
Legumbres o rotación de pradera	0,24	0,27	0,30	
Granos pequeños	0,24	0,27	0,30	
Pastizal:				
% del suelo cubierto o pastoreo				
Más del 75% - Poco -	0,14	0,20	0,28	
Del 50 al 75% - Regular -	0,20	0,24	0,30	
Menos del 50% - Excesivo -	0,24	0,28	0,30	
Bosque:				
Cubierto más del 75%	0,07	0,16	0,24	
Cubierto del 50 al 75%	0,12	0,22	0,26	
Cubierto del 25 al 50%	0,17	0,26	0,28	
Cubierto menos del 25%	0,22	0,28	0,30	
Zonas urbanas	0,26	0,29	0,32	
Caminos	0,27	0,30	0,33	
Pradera permanente	0,18	0,24	0,30	

Grupo hidrológico

Т	Andosoles					
Q	Arenosoles			Arenas con poco limo v		
J	Fluvisoles	A	Muy alta	arcilla (escurrimiento		
0	Histosoles			mínimo)		
U	Ranker					
0.000	Calcisoles					
X, Y	(antes xerosol y yermosol)					
I, E	Leptosoles (antes litosoles y rendizinas)	в	Buena	Arenas finas y limos		
Z	Solonchaks					
D	Podzoles					
F	Ferralsoles					
R	Regosoles					
н	Feozems					
K	Kastanozems	0		Arenas muy finas, limos y		
N	Nitosoles	C	Media	bastante arcilla		
С	Chernozems					
÷	Alisoles					
A	Acrisoles					
в	Cambisoles					
G	Gleysoles			4		
L	Luvisoles			Arcillas en grandes cantidades, suelos poco		
v	Vertisoles	С	Baja	profundos con subhorizonte		
W	Planosoles			casi impermeables		
S	Solonetzs			(езсинишенно шахино)		
D	Podzoluvisoles					
20	Plintosoles					
-	Lixisoles					

Tabla Excel

	🔀 🛛 🗸 🕑 😴 🗋 🖙 RioSanMiguel_K - Microsoft Excel							
Aro	chivo Inicio Insertar Diseño	o de página	Fórmulas	Datos	Revisar Vista		X 🖬 🗆 🕥 A	
	🖳 🐰 Calibri 🔹 11 👻	= = =	📑 Núme	ero -	🛐 Formato condicio	onal *	🖼 Insertar 👻 🗡 👔	
	NKS AA			% 000	📑 Dar formato com	o tabla 👻 🚦	🗕 Eliminar 🗸 📑 🗸 🖉 🖉	
Pe	egar 🎯 🗸 🖄 🗸 🗛 🗸	<≣ € ≣ &	\$ ₇ + 0	00	🔜 Estilos de celda 🔻		Formato - Ordenar Buscary	
Port	tapapeles 🖬 Fuente 🗗	Alineación	n 🖬 Núm	nero 🗔	Estilos		Celdas Modificar	
	C81 • ()	fx					¥	
	A B C D E F G							
1	TIPO	NOM_SU -	AREA 💌	GPOHIDR	▼ K ▼	К*А	🖌 Uso Respecto ala norma 🖃 📄	
2	Bosque cultivado	Feozem	0.67213446	С	0.26	0.17	Bosque cubierto del 50% al 75%	
3	Bosque de encino	Litosol	345.8324	В	0.22	76.08	Bosque cubierto del 50% al 75%	
4	Bosque de encino	Xerosol	65.3711629		0-22	14.38	Bosque cubierto 1 50% al 75%	
5	Bosque de encino	Feozem	25.4590132	C	0.26	6.62	Bosque cubierto del 50% al 75%	
6	Bosque de encino	Regosol	49.852669°	В	0.22	10.97	Bosque cubierto del 50% al 75%	
7	Bosque de encino-pino	Litosol	1.3982.071	٥	0.22	0.31	Bosque cubierto del 50% al 75%	
8	Bosque de galeria	Litosol	0 16677449	В	0.22	0.04	Bosque cubierto del 50% al 75%	
9	Bosque de galeria	Regosol	0.09001116	В	0.22	0.02	Bosque cubierto del 50% al 75%	
10	Bosque de pino	Lit ² sol	0.56183555	В	0.22	0.12	Bosque cubierto del 50% al 75%	
11	Bosque de pino-encino	Litose'	0.37981209	в	0.22	0.08	Bosque cubierto del 50% al 75%	
12	Cuerpo de agua	cu irpo de	1.1944/25/	Α	0.00	0.00	Cuerpo de agua	
13	Cuerpo de agua	Xerosol	1.23756909	В	0.00	0.00	Cuerpo de agua	
14	Cuerpo de agua	Fersem	3.16492272	С	0.00	0.00	Cuerpo de agua	
15	Cuerpo de 2 ₈ ua	ZU	0.01889309	Α	0.00	0.00	Cuerpo de agua	
16	Matorral "er_rtico microfilo	Litosol	343.673166	В	0.24	82.48	Pastizal regular del 50% al 75%	
17	Matedes actico microfilo	Xerosol	274.55121	В	0.24	65.89	Pastizal regular del 50% al 75%	
18	Marchial desertico microfilo	Fluvisol	29.4849752	Α	0.20	5.90	Pastizal regular del 50% al 75%	
19	Matorral desertico microfilo	Feozem	193.300286	С	0.30	57.99	Pastizal regular del 50% al 75%	
Las columnas que se	e deben llenar	ermosol	38.0593259	В	0.24	9.13	Pastizal regular del 50% al 75%	
		Regosol	529.993037	В	0.24	127.20	Pastizal regular del 50% al 75%	
		ierpo de	0.1105149	Α	0.20	0.02	Pastizal regular del 50% al 75%	
		Litosol	69.0142406	В	0.24	16.56	Pastizal regular del 50% al 75%	
		(erosol	0.34410938	В	0.24	0.08	Pastizal regular del 50% al 75%	
		luvisol	0.65509186	Α	0.20	0.13	Pastizal regular del 50% al 75%	
List	to					ſ		

Resumen Tabla

	SI ▼ (× ✓ f _x =((+(D4*E4)+(D5*E5)+(D8*E8)+(D9*E9)+(D11*E11)+(D12*E12)+(D14*E14)+(D15*E15)+(D16*							
	А	В	С	D	E	F	G	
1								
2								
3		Tipo de suelo	Uso de suelo	К	Área Km2	Uso Respecto ala norma		
4		Α	Bosque	0.12	0.02	Bosque Cubierto del 50 al 75%		
5		В	Bosque	0.22	517.74	Bosque Cubierto del 50 al 75%		
6		С	Bosque	0.26	26.13	Bosque Cubierto del 50 al 75%		
7		А	Pastizal	0.20	95.17	Pastizal regular del 50% al 75%		
8		В	Pastizal	0.24	2808.69	Pastizal regular del 50% al 75%		
9		С	Pastizal	0.30	315.22	Pastizal regular del 50% al 75%		
10		Α	Riego	0.24	47.60	Cultivo		
11		В	Riego	0.27	57.87	Cultivo		
12		С	Riego	0.30	79.42	Cultivo		
13		Α	Zona urbana	0.26	3.31	Zona urbana		
14		В	Zona urbana	0.29	12.21	Zona urbana		
15		С	Zona urbana	0.32	0.75	Zona urbana		
16		А	Cuerpo de agua	0.00	19.86	Cuerpo de agua		
17	=((+(D4*E4)+	(D5*E5)+(D8*E8	8)+(D9*E9)+(D11*	E11)+(D12*E12)+(D14*	E14)+(D15*E1	5)+(D16*E16)+(D6*E6)+(D7*E7)+(
18				D10*E10))/E17)				
19								

Tipo de suelo	Uso de suelo	К	Área Km2	Uso Respecto ala norma	
А	Bosque	0.12	0.02	Bosque Cubierto del 50 al 75%	
В	Bosque	0.22	517.74	Bosque Cubierto del 50 al 75%	
С	Bosque	0.26	26.13	Bosque Cubierto del 50 al 75%	
А	Pastizal	0.20	95.17	Pastizal regular del 50% al 75%	
В	Pastizal	0.24	2808.69	Pastizal regular del 50% al 75%	
С	Pastizal	0.30	315.22	Pastizal regular del 50% al 75%	
А	Riego	0.24	47.60	Cultivo	
В	Riego	0.27	57.87	Cultivo	
С	Riego	0.30	79.42	Cultivo	
Α	Zona urbana	0.26	3.31	Zona urbana	
В	Zona urbana	0.29	12.21	Zona urbana	
С	Zona urbana	0.32	0.75	Zona urbana	
А	Cuerpo de agua	0.00	19.86	Cuerpo de agua	
	K total	0.242	3983.99		

CALCULO DEL COEFICIENTE DE ESCURRIMIENTO ANUAL (Ce)

K: Parámetro que depende del tipo y uso del suelo			uso del suelo	Coeficiente de escurrimiento anual (Ce)		
Si K resulta menor o igual a 0.15			0.15	Ce= K (P	-250) / 200	
Si k es mayor que 0.15				Ce=K(P-250)/200+(K-0.15)/1.5		
	К=	0.242				
	P=	464.0				
	Ce=	0.259	Coeficiente	de escurrimiento anual		

La precipitación media total calculada en función de los datos de las estaciones, resultado de 464 milímetros con el factor de Thiessen

Analyss Tools-Proximity-Create Thiessen Polygons

Recortar con respecto a la cuenca de estudio: Analysis Tools-Extract-Clip

CLAVE	ESTACIÓN	ÁREA (km²)	FACTOR DE THIESSEN	PRECIPITACIÓ N TOTAL	PRECIPITACI ÓN PONDERADA
6139	Hermosillo	145.69	0.0366	351	13
26181	Rayón	1505.30	0.3778	496	187
26182	Pesqueira	163.69	0.0411	330	14
26214	Huepac	3.61	0.0009	509	0
26180	El Cajón	329.87	0.0828	420	35
26006	Bacadehuachi	3.97	0.0010	452	0
26262	El Fresnal	597.39	0.1499	45 I	68
26255	El Claro	32.98	0.0083	390	3
26259	Cumeral	4.92	0.0012	519	I
26025	Cucurpe	330.53	0.0830	543	45
26008	Banámichi	179.03	0.0449	449	20
26007	Bacanuchi	543.73	0.1365	474	65
26005	Arizpe	143.25	0.0360	368	13
	TOTAL	3983.97	1.0000	442	464

SIMBOLOGÍA

Curvas de Intensidad-Duración-Frecuencia

• Utilizar Isoyetas de Intensidad de Lluvia por período de

Intensidad - Duracion Frecuencia (mm/Hr) - (SCT, 2000)							
TR	Duracion (min)						
(años)	5.00	10.00	20.00	30.00	60.00	120.00	240.00
10							
20							
50							
100							

Lluvia de diseño y lluvia en exceso

• Tormenta de diseño (Metodo de Bloques Alternos)

Ordenar "No." Con la precipitación mayor en el centro

La tabla coloca la precipitación de acuerdo con "No.Alternado"

Caracteristicas generales de la cuenca: MIGUEL

- I. Área de la cuenca
- 2. Longitud de cauce principal
- 3. Cota máxima
- 4. Cota mínima
- 5. Pendiente media del cauce
- 6. Tiempo de concentración.

Cálculo de parámetros hidrológicos

- 1. Coeficiente de escurrimiento "Ce" y Número Curva "CN"
- 2. Curvas de Intensidad-Duración-Frecuencia
- 3. Lluvia de diseño y lluvia en exceso

Ingresar Información en tabla de excel

- Cálculo del gasto de diseño para diferentes períodos de retorno
 - I. Fórmula Racional (Excel)
 - 2. Método de Chow (Excel)
 - 3. Hidrograma Unitario SCS (HEC-HMS)

Cálculo del gasto de diseño para diferentes períodos de retorno

Fórmula Racional

 Este método asume que el máximo porcentaje de escurrimiento de una cuenca pequeña, ocurre cuando la totalidad de tal cuenca está contribuyendo al escurrimiento, y que el citado porcentaje de escurrimiento es igual a un porcentaje de la intensidad de lluvia promedio; lo anterior se expresa mediante la siguiente fórmula:

$$Q_p = 0.2778 CiA_C$$

Qp	gasto máximo posible que puede presentarse en la cuenca cuando la duración de la precipitación es igual o mayor que el tiempo de concentración. También se le conoce como gasto de equilibrio en m ³ /s
С	coeficiente de escurrimiento que representa la fracción de la lluvia que escurre en forma directa. Para las condiciones de la cuenca bajo estudio su valor se selecciona de acuerdo el tipo de suelo y vegetación
i	intensidad de la lluvia en mm/h
Ac	área de la cuenca en km².

Método Ven Te Chow

 Fue deducido basándose en el concepto de hidrogramas unitarios e hidrogramas unitarios sintéticos y considera que el caudal pico del escurrimiento directo de una cuenca. Puede calcularse como el producto de la lluvia en exceso por el caudal pico de un hidrograma unitario.

$$Q = \left[\frac{0.278 * Pe * Ac}{de}\right] * Z$$

$$Q = 2.78 * X * Ac * Z$$

Q.- Gasto (m³/seg) P.- Precipitación total (mm) Ac.- Área de la cuenca (km²) Z.- Factor de reducción pico X.- Factor de escurrimiento

Ingresar Información en tabla de excel

Método Hidrograma Unitario (SCS)

- Este modelo corresponde a un hidrograma unitario sintético curvilíneo adimensional equivalente a un hidrograma triangular con las mismas unidades de tiempo y descarga. La información necesaria es similar a la utilizada para el método de Chow.
- El gasto pico del hidrograma unitario se describe como:

$$q_{p=0.208\frac{A}{t_p}}$$

q_{p.} gasto de pico unitario por milímetro de precipitación efectiva en m³/s/mm
A.- área de la cuenca en Km²
t_{p.-} tiempo de pico del hidrograma en horas

Definiciones

• Gasto Pico

• Tiempo de retraso