

UNIVERSIDAD DE SONORA

FACULTADA INTERDICIPLINARIA
CIENCIAS EXACTAS Y
NATURALES
DEPARTAMENTO DE GEOLOGIA

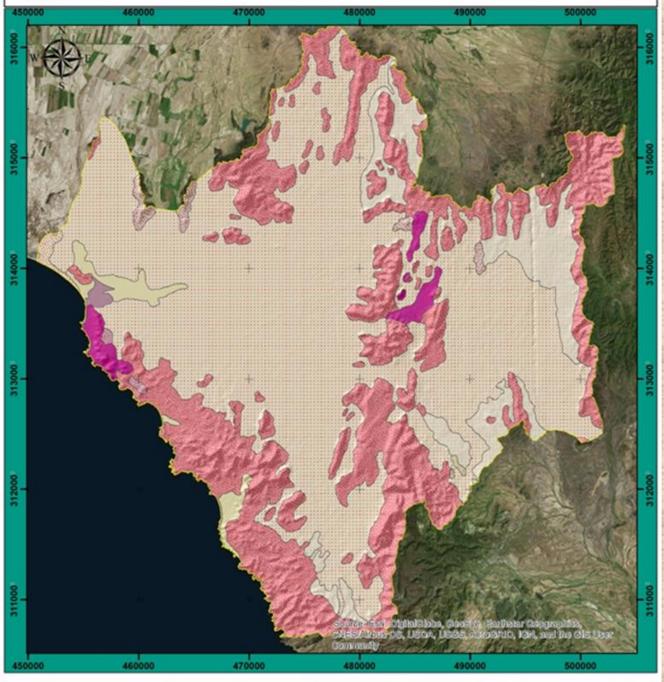
MATERIA

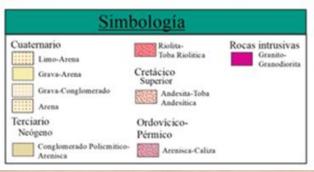
HIDROLOGIA II

"ACUÍFERO COSTERO EL SAHUARAL CARACTERIZACIÓN PIEZOMETRICA Y HIDROGEOQUIMICA, SONORA, MÉXICO."

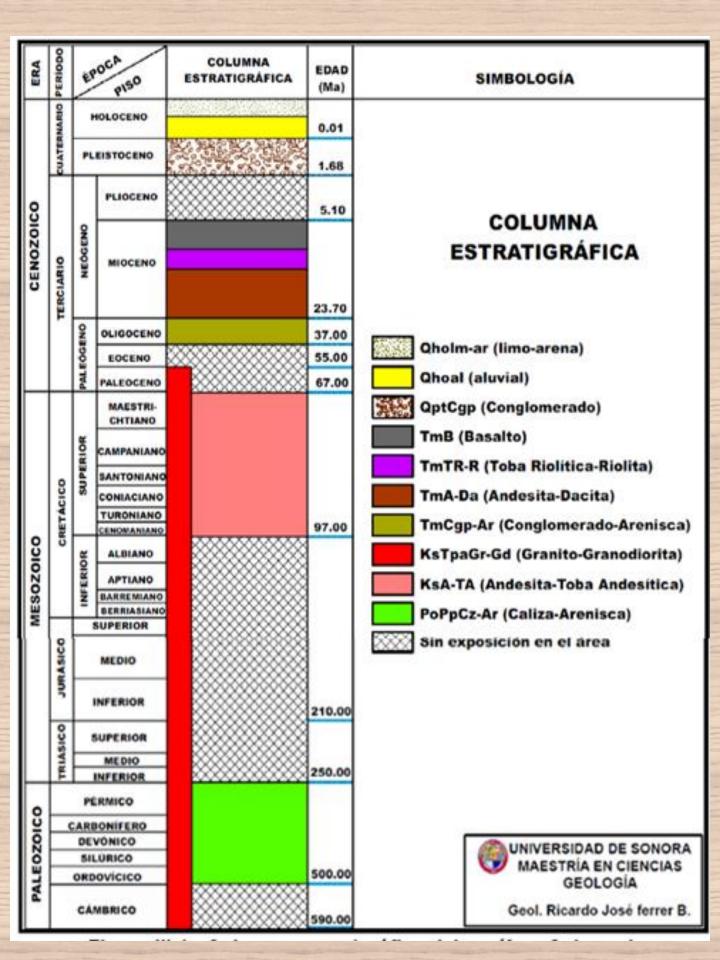
PRESENTA: M.C. J. ALFREDO OCHOA G.

Geología


Como se observa en la Figura, la subcuenca El Sahuaral presenta diferentes litologías en una pequeña área, donde se encuentran predominantemente unidades sedimentarias pertenecientes a un relleno sedimentario, mientras existen afloramientos de rocas volcánicas alrededor de toda la subcuenca y pequeños cuerpos intrusivos aflorando en superficie.


En mayor proporción se tienen Arenas-Limos del Cuaternario correspondiendo a toda la parte central de la subcuenca, rodeado de rocas predominantemente Riolita-Toba riolítica del Mesozoico.

Mapa Geológico de la subcuenca El Sahuaral


Datos Generales Autores: Cabrera Y., Nuñez D., Gareliz C. Elaboracion a partir de: carta geológica 1:250000 SGM Proyección: Universal Transversal Mercator Cuadrícula: UTM DATUM: WGS84 Escala

Estratigrafía y Litología

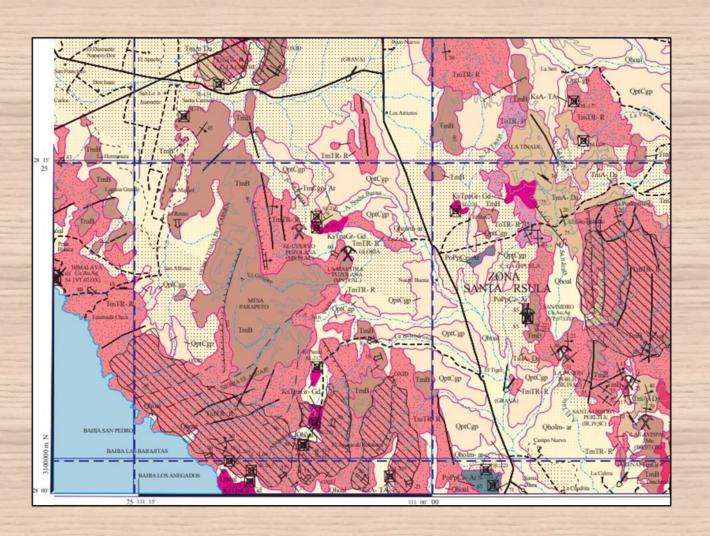
La columna estratigráfica y litología de la subcuenca El Sahuaral, comprende rocas de material aluvial en el cuaternario, asi como conglomerados.

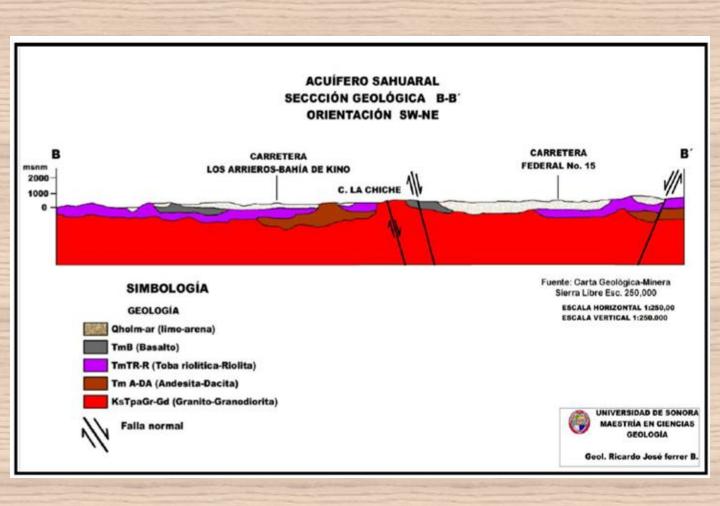
En el Terciario, la litología predominante es Andesita-Dacita, de composición volcánica. En el Mesozoico, se tienes rocas de composición principalmente volcánica e intrusión de rocas graníticas. Mientras que en el paleozoico se tienen rocas sedimentarias como calizas y areniscas.

En la siguiente figura, tomada de la tesis de Ricardo Ferrer, se muestra la columna estratigráfica que muestra la sucesión de litologías a través del tiempo.

Geología Estructural

En la subcuenca El Sahuaral, existieron diferentes eventos geológicos-estructurales que han ocurrido a través del tiempo, estos eventos se ven reflejado en la zona de estudio, además de presentar evidencias notorias de orientaciones en los afloramientos, separados por planicies aluviales y eólicas.


Esta distribución está controlada por estructuras con una misma distribución general NNW-SSE con buzamientos al NE y al SW que en algunas ocasiones muestran lineamientos secundarios representantes de grandes fallas y fracturas orientadas NNE-SSW.


Esto es, por que las sierras están delimitadas por estructuras limítrofes que le otorgan su orientación general, lo que ayuda a concebir la presencia de altos y bajos estructurales (Horst y Graben).

La situación estructural en el área que abarca la zona hidrogeológica, se tienen estructuras con una orientación N-S y buzamiento al W, evidencia de la zona influencia estructural de la Provincia Extensional del Golfo, (Ferrer, 2016).

La presencia de rocas volcánicas nos dice una corteza fuertemente tectonizada, considerando que para el ascenso de estos líquidos es necesario un medio propicio y con presencia de estructuras (fallas) profundas.

Incluso es claramente observable que algunas unidades volcánicas, el cual tienen un modo de emplazamiento controlado por estructuras. Estas relaciones cortantes mediante estructuras limítrofes primarias pueden ser observadas en la distribución de los intrusivos de composición granítica-granodioritica del Cretácico Superior-Paleógeno, ya que se muestran seccionados bajo las mismas condicionantes que las cuencas sedimentarias y volcanosedimentarias.

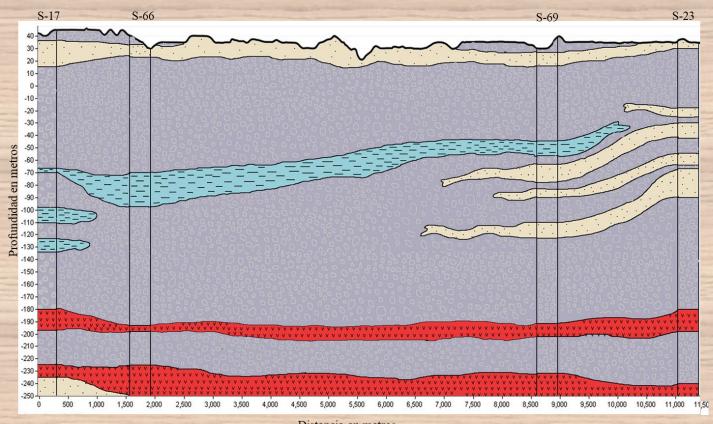
Geología del Subsuelo

Para el área de El Sahuaral, en el desarrollo del siguiente apartado, se utilizó información recabada estudios anteriores de pozos con sus respectivos cortes hidroestratigráficos y estudios geofísicos realizados en el área de estudio.

Los aprovechamientos básicamente se localizan en los depósitos cuaternarios que se encuentran en la parte superior de la sección geológica.

Las profundidades de los pozos se distribuyen: alrededor del 70% tienen una profundidad menor a los 200 m, entre un 26% y 27% la profundidad esta entre 200 a 300 m, y el resto varía dentro de los 300 m.

Hay que hacer mención que algunos de los pozos presentan descripciones pobres, lo que dificulta diferenciar diferentes facies sedimentarias que pudiesen pertenecer a diferentes ambientes de depósitos, (Ferrer, 2016).


	S-17			S-66			S-23		1
Prof.(m)	Litología	Tipo de material	Prof.(m)	Litología	Tipo de material	Prof.(m)	Litología	Tipo de material	i
0-2	Gravilla con arena media-fina	I	0-3	Suelo	I	0-3	Caliche arenoso		i
2-14	Arena cuarzosa media-fina	III	3-9	Arena y caliche	I	3-10	Boleo		
14-34	Grava muy poco fina	I	9-12	Grava	Ī	10-18	Boleo-Grava		i
34-46	Gravas en arena media-gruesa	Ш	12-21	Canto rodado	I	18-21	Conglomerado		
46-58	Gravas de rocas volcánicas	I	21-48	Boleo	I	21-27	Boleo-Arena		
58-68	Gravas en arena media	I	48-51	Canto rodado	I	27-30	Conglomerado		
68-70	Arcilla y escasa grava	1	51-70	Boleo	I	30-42	Boleo-Arena		
70-86	Gravilla con arena gruesa	I	70-79	Canto rodado	I	42-54	Conglomerado		
86-90	Gravilla con arena media	I	79-97	Boleo	I	54-64	Bolero-Arena		
90-98	Grava fina con arena y arcilla	Ш	97-134	Boleo y arcilla	I	64-67	Conglomerado		
98-110	Arcilla con escasas gravas	I				67-82	Grava-arena		
110-124	Gravas y gravillas	Ш				82-94	Boleo-Arena		
124-136	Arcilla con escasas gravas	I				94-109	Grava-Arena		
136-146	Gravilla con arena fina	I				109-115	Grava gruesa		
146-170	Gravilla con arena fina	I				115-121	Conglomerado		
170-180	Gravilla con arena fina	I							
180-198	Roca volcánica de composición acida								
198-204	Gravilla con arena fina	I							
204-226	Gravilla con arena fina	I							
226-236	Roca volcánica de composición intermedia								
236-240	Arena gruesa y arcilla café	I							

Secciones Geohidrológicas

Las secciones geohidrológicas ilustran la conformación de los mantos acuíferos, así como el tipo de este, espesor, sucesión de formas subyacentes y por lo tanto las profundidades y espesores de estas capas (Ferre,2016).

Se realizó una sección geohidrológica, con los cortes geológicos de los pozos presentados en la Figura 27, la máxima profundidad es de 250 m en el pozo S-17 y siendo el de menor profundidad S-66.

Para poder complementar la falta de información de en la parte intermedia entre los pozos S-66 y S-23, se tomó en cuenta el pozo S-69, valiéndose de la información piezométrica así como geoquímica, para inferir la litología que concordara con la sección geohidrológica, como se muestra en la Figura 27.

Distancia en metros

Gravas y Gravillas : Arenas

Rocas Volcánicas

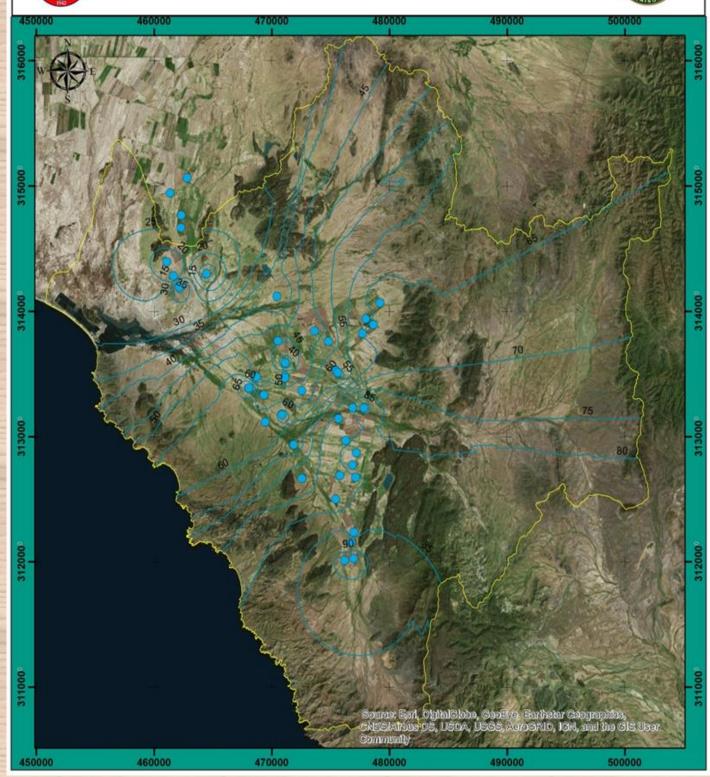
HIDROGEOLOGÍA

A continuación, se presentan la piezometría tomada de varios estudios hidrológicos, el cual marca la evolución que ha tenido el acuífero El Sahuaral en el tiempo y por consecuencia el agua subterránea; para ello se ha utilizado el trazo de líneas equipotenciales, además de la generación de secciones geohidrológicas para determinar la dirección del flujo subterráneo en estos acuíferos y subcuencas.

se trabajaron con los datos marcados en la Tabla 6, los cuales los que están marcados representan los datos tomados en los que se apoyaron para la sección geohidrológica.

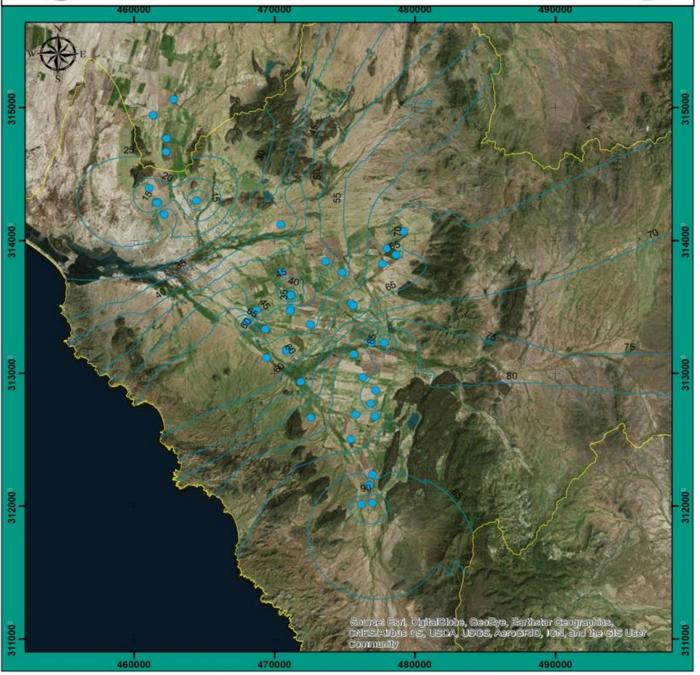
		Propietario	x	Y		Prof. NE	014 ENE	Prof. NE	ENE	Prof. NE	ENE	Evolución
	5-1	El Pedernal 1	461665	3142810	7.00	13.49	-6.49	12.68	-5.68	12.78	-5.78	-0.71
	S-2	El Pedernal 2	464470	3142989	6.22	11.39	-5.17	11.58	-5.36	11.78	-5.56	0.39
	S-3		462170	3141923	10.00	38.49	-28.49	30.12	-20.12	21.75	-11.75	-16.74
	S-S	El Pedernal S	461097	3143927	10.47	15.64	-5.17	18.77	-8.30	14.92	-4.45	-0.72
	S-11	Las Conchas	468089	3133875	11.59	69.20	-57.61	68.20	·56.61	68.92	-57.33	+0.28
	5-12		469371	3133293	15.00	50.00	-35.00	50.37	-35.37	48.69	-33.69	-1.31
	S-13	San Carlos	469463	3131145	19.13	56.31	-37.18	56.45	-37.32	54.63	-35.50	-1.68
	S-14	San Isaac	470889	3131708	19.62							
	5-17		479221	3140658	45.00	61.90	-42.28	60.87	-41.25	58.61	-38.99	-3.29
	S-18	Sta. Bernardina	471890	3129342	20.51	70.10	-25.10	70.22	-25.22	70.34	-25.34	0.24
	S-20	Agua Dulce	475683	3131418	34.04	62.69	-42.18	61.86	-41.35	60.04	-39.53	+2.65
	5-21	Santa Leticia	472592	3126663	26.65	75.99	-41.95	76.50	-42.46	73.84	-39.80	-2.15
	S-23		476313	3129673	38.00	71.72	-45.07	71.73	-45.08	69.21	-42.56	-2.51
		María Dolores	477216	3128695	36.25	79.50	-41.50	79.63	-41.63	78.12	-40.12	1.38
	S-27					84.66	-48.41	82.25	-46.00	79.84	-43.59	-4.82
	S-29	San Pedro	476885	3127723	32.72	83.56	-50.84	82.03	-49.31	79.12	-46.40	-4.44
	5-31	La Hermosura	475449	3125000	33.45	77.59	-44.14	78.18	-44.73	77.76	-44.31	0.17
	5.32	El Refugio	477166	3126721	31.36	79.40	-48.04	79.27	-47.91	76.41	-45.05	-2.99
	S-35	Alcalá	477011	3122356	70.88	83.40	-12.52	83.59	-12.71	84.71	-13.83	1.31
	S-38	La Lagunita	476202	3120101	48.97	91.48	-42.51	91.38	-42.41	91.64	-42.67	0.16
	S-39	El Retiro	476977	3120239	52.59	93.78	-41.19	93.87	-41.28	92.53	-39.94	-1.25
	5-40		461361	3149417	17.00	31.75	-14.75	31.45	-14.45	32.10	-15.10	0.35
	5-41		462826	3150619	21.00	36.00	-15.00	35.52	-14.52	34.96	-13.96	-1.04
	5-42		462343	3147651	14.00	28.28	-14.28	29.31	-15.31	26.41	-12.41	-1.87
ı	5.44		462311	3146659	12.00	23.22	-11.22	24.62	-12.62	24.21	-12.21	0.99
	S-46	San Juanico	470457	3141178	9.94	35.04	-25.10	36.02	-26.08	39.70	-29.76	4.66
	S-47	Xochiti	471170	3135867	18.11							
	5-48		478012	3139375	34.00	34.32	-16.21	33.55	-15.44	32.73	-14.62	-1.59
	S-49		470546	3137622	14.00	59.76	-25.76	61.32	-27.32	60.17	-26.17	0.41
	S-50	San Alfredo	468744	3134735	12.28	45.02	-31.02	45.34	-31.34	44.98	-30.98	-0.04
	S-54	El Pierso	473653	3138420	20.36	45.56	-33.28	43.55	-31.27	42.03	-29.75	+3.53
	S-55	Las Virgenes 5	471173	3134825	22.48	46.54	-26.18	47.65	-27.29	48.75	-28.39	2.21
	S-57	El Tetablate	471140	3134667	19.11	45.90	-23.42	53.71	-31.23	58.40	-35.92	12.50
	S-58	El Tetablate	471140	3137582	21.25	52.15	-33.04	52.26	-33.15	52.69	-33.58	0.54
						53.45	-32.20	54.60	-33.35	54.42	-33.17	0.97
	S-S9	Las Virgenes 4	472572	3133663	23.86	52.00	-28.14	54.64	-30.78	53.91	-30.05	1.91
	S-61	El Mechudo	475500	3135237	23.48	67.39	-43.91	61.49	-38.01	62.21	-38.73	-5.18
	5-64	Barcelonet	475633	3135088	30.18	46.19	-16.01	62.20	-32.02	63.21	-33.03	17.02
	S-65	Bacerac	477736	3138222	34.31	65.20	-30.89	60.47	-26.16	58.80	-24.49	-6.40
	S-66		478673	3138906	40.00	70.20	-30.20	65.62	-25.62	65.92	-25.92	-4.28
	S-69	El Huarache	476913	3132292	37.12	79.55	-42.44	81.64	-44.53	82.30	-45.19	2.75
	5.70	La Humareda	475807	3126871	29.65	75.77	-46.12	75.60	-45.95	74.78	-45.13	-0.99
	S-72	El Apache	477846	3132273	39.16	87.47	-48.31	90.20	-51.04	90.63	-51.47	3.16
	S-73	San Isidro	476778	3121546	70.70	87.83	-17.13	87.50	-16.80	86.10	-15.40	-1.73

Profundidad al Nivel Estático

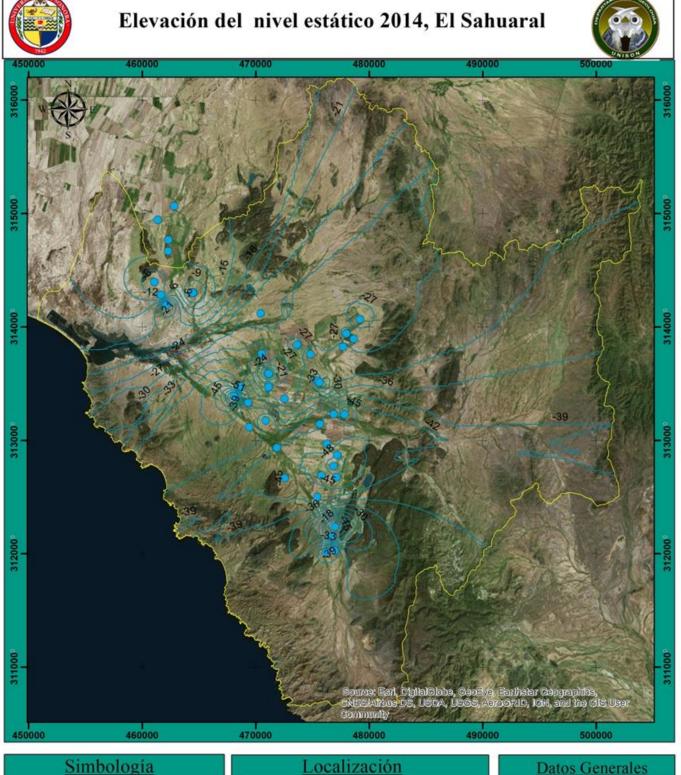

Para el acuífero El Sahuaral se realizaron las configuraciones de la profundidad del nivel estático con los datos establecidos en la Tabla _, se basó en la digitalización del mapa de profundidad al nivel estático de la red piezométrica de CONAGUA.

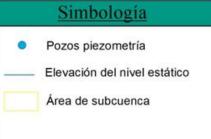
En la Figura_, se muestra la configuración de la profundidad del nivel estático para el año 2014, en donde podemos observar claramente que las profundidades aumentan, en la parte noroeste se encuentra entre los 15 y 30 m, los cuales van incrementando hacia la parte central de la subcuenca entre los valores 40-60 m y finalmente termina en la parte sur con 80-90 m en profundidades del nivel estático.

Profundidad del nivel estático 2014, El Sahuaral



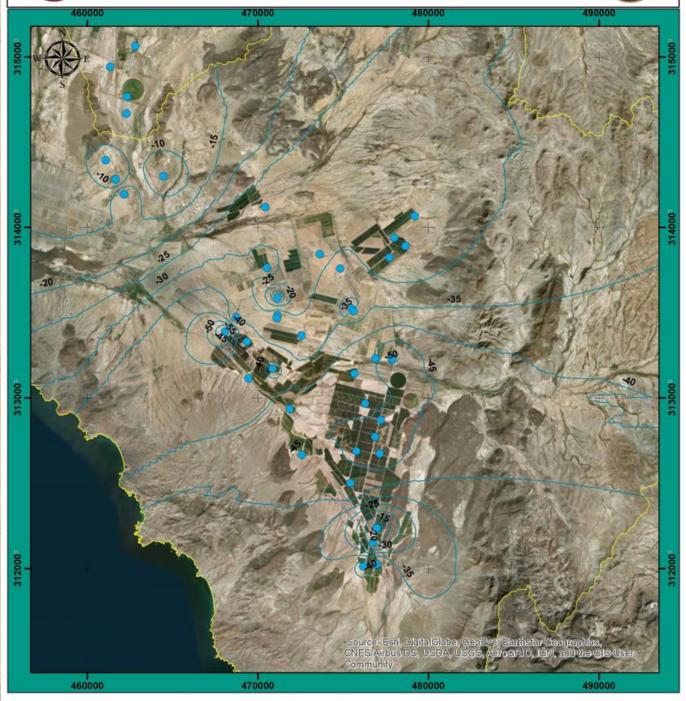
Profundidad del nivel estático 2015, El Sahuaral


Pozos Piezometría Profundidad del Nivel Estático Área de subcuenca



Datos Generales

Autores: Cabrera Y., Nuñez D., Gareliz C. Elaboración a partir de: información de INEGI Proyección:Univesal Transversal Mercator Cuadrícula: UTM DATUM: WGS84


Autores: Cabrera Y., Nuñez D., Gareliz C. Elaboración a partir de: información de INEGI Proyección: Universal Transversal Mercator Cuadrícula: UTM DATUM: WGS84 Escala

0 1.5 3

Elevación del nivel estático 2015, El Sahuaral

Simbología Pozos Piezometría Elevación del nivel estático Área de subcuenca

Datos Generales

Autores: Cabrera Y., Nuñez D., Gareliz C. Elaboración a partir de: información de INEGI Proyección:Univesal Transversal Mercator Cuadrícula: UTM DATUM: WGS84

Escala

0 0.751.5 3 4.5 6

Evolución del nivel estático 2014-2016

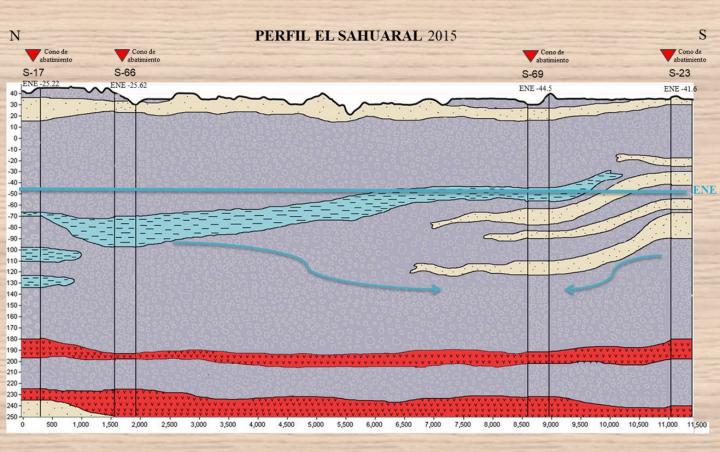
Simbología Pozos Piezometría

Profundidad del Nivel Estático

Área de subcuenca

Localización

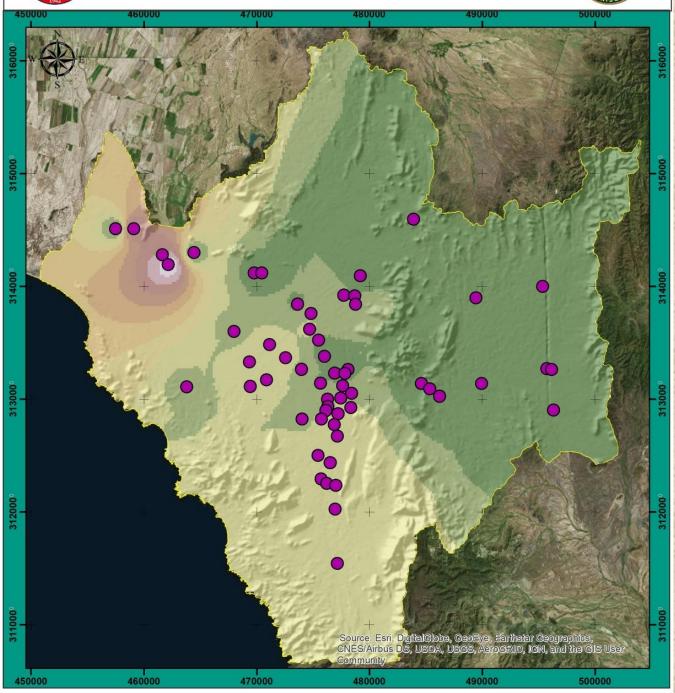
Datos Generales

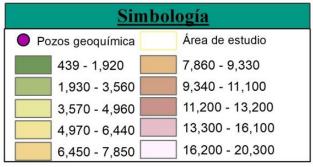

Autores: Cabrera Y., Nuñez D., Gareliz C. Elaboración a partir de: información de INEGI Proyección:Univesal Transversal Mercator Cuadrícula: UTM

Escala

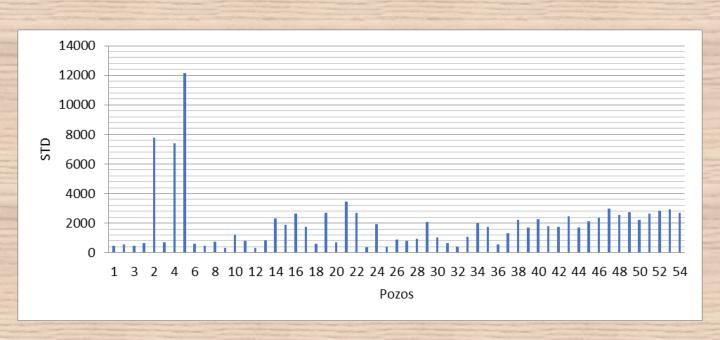
DATUM: WGS84

0 0.751.5 3 4.5 6 Kilómetros


Dirección del Flujo Subterráneo



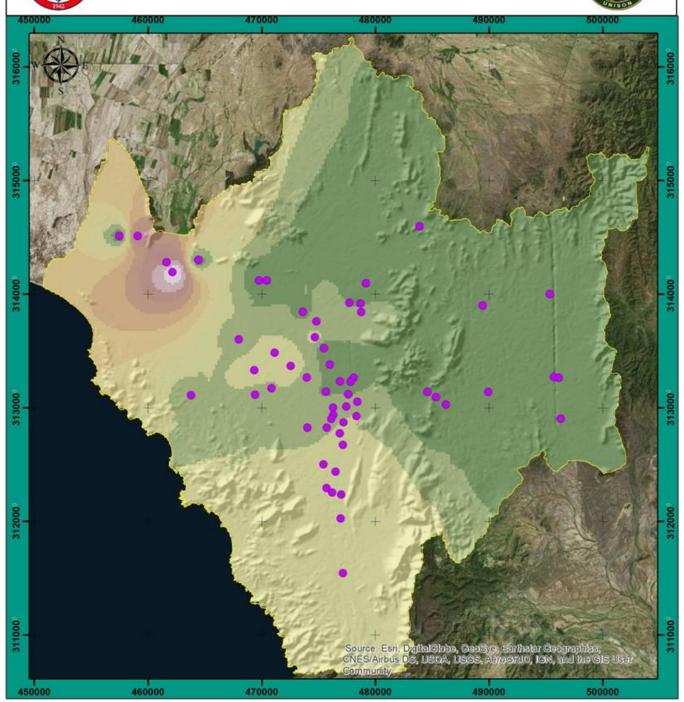
Conductivad Eléctrica, El Sahuaral


Datos Generales

Autores: Cabrera Y., Nuñez D., Gareliz C. Elaboración a partir de: información de INEGI Proyección:Univesal Transversal Mercator Cuadrícula: UTM

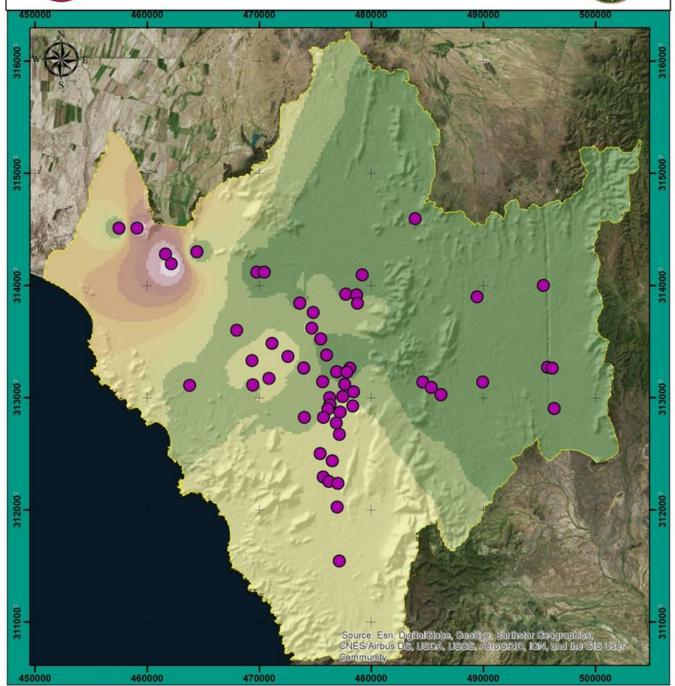
DATUM: WGS84

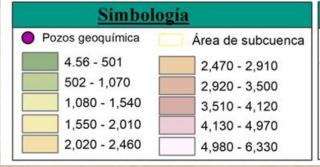
			Kilómetros
0 1 252 5	5	7.5	10


A través del tiempo los sólidos totales disueltos nos representan la calidad del agua subterránea. El grafico _, nos indica las concentraciones de STD en la subcuenca El Sahuaral, siendo el pozo 5 con mayores concentraciones.

Sólidos Totales Disueltos, El Sahuaral

Datos Generales


Autores: Cabrera Y., Nuñez D., Gareliz C. Elaboración a partir de: información de INEGI Proyección:Univesal Transversal Mercator Cuadrícula: UTM DATUM: WGS84



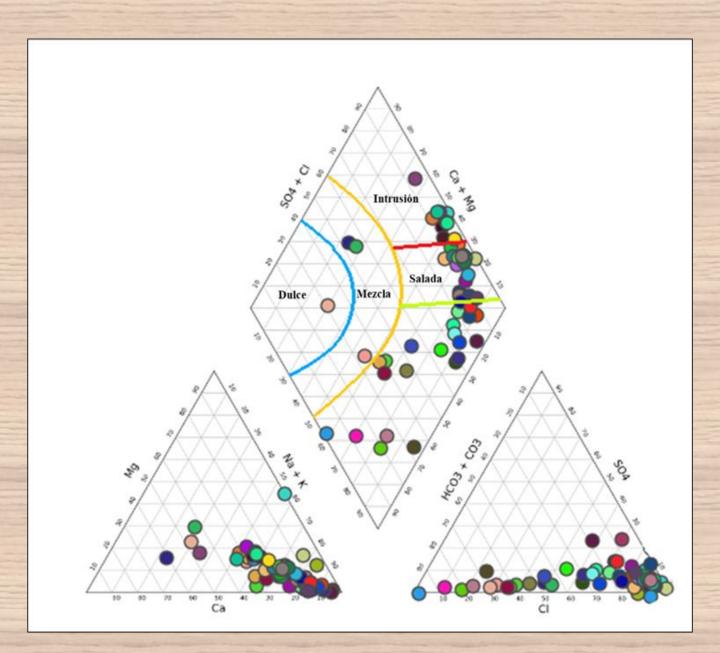
Cloro, El Sahuaral

Datos Generales


Autores: Cabrera Y., Nuñez D., Gareliz C. Elaboración a partir de: información de INEGI Proyección:Univesal Transversal Mercator Cuadrícula: UTM DATUM: WGS84

			Kilómetros
0 1.252.5	5	7.5	10

Sodio, Sahuaral


Datos Generales

Autores: Cabrera Y., Nuñez D., Gareliz C. Elaboración a partir de: información de INEGI Proyección:Univesal Transversal Mercator

Proyección:Univesal Transversal Mercator Cuadrícula: UTM DATUM: WGS84

			Kilómetros
1.252.5	5	7.5	10

Con los estudios realizados es posible determinar la intrusión marina en la subcuenca El Sahuaral. El diagrama de Pipper además de ser utilizado para determinar el tipo de agua, también es utilizado para identificar la intrusión salina. En la Figura_, se muestra el diagrama de Pipper con las distribuciones de hidrogeoquímica en los pozos de la subcuenca. En general, las muestras de agua dulce se ubican en el vértice de la izquierda del rombo mientras que el vértice de la derecha se tiene agua marina. El vértice superior está asociado con la intrusión, y el vértice inferior se tiene agua que evoluciona hacia sódica carbonatada.

IX. BIBLIOGRAFÍA

- http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/26/260 29.pdf
- http://mapserver.sgm.gob.mx/Cartas_Online/geologia/19_H12-11_GM.pdf
- http://internet.contenidos.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/historicos/2104/702825221294/702825221294_1.pdf
- https://www.gob.mx/cms/uploads/attachment/file/104332/DR_2636.pdf
- http://www.dof.gob.mx/nota_detalle.php?codigo=2063863&fecha=31/12/1969
- ❖ Taylor, A. (2017). Modelación numérica de flujo y transporte de la región costera del Valle de San José de Guaymas, Sonora, México, utilizando el programa Seawat. México: Universidad de Sonora.
- https://agua.org.mx/que-es/
- file:///C:/Users/Sony/Documents/1810-Presentaci%C3%B3n_Carlos_Rosado.pdf
- https://portal.uah.es/portal/page/portal/GP_EPD/PG-MA-ASIG/PG-ASIG-67044/TAB42351/T10-
 - Aguas%20subterr%E1neas%20y%20medio%20ambiente.pdf
- ❖ Ferre Bauza Ricardo (2016), EVALUACION DE LA VULNERABILIDAD INTRINSICA DEL ACUIFERO SAHUARALPOR EL METODO GODS Y ANALISIS HIDROGEOQUIMICOS, NOROESTE DE MEXICO. Universidad de Sonora.

POR SU ATENCIÓN GRACIAS